CHRIS BROOKS

INTRODUCTORY ECONOMETRICS FOR FINANCE

3rd Edition

Introductory Econometrics for Finance

This bestselling and thoroughly classroom-tested textbook is a complete resource for finance students. A comprehensive and illustrated discussion of the most common empirical approaches in finance prepares students for using econometrics in practice, while detailed financial case studies help them understand how the techniques are used in relevant financial contexts. Worked examples from the latest version of the popular statistical software EViews guide students to implement their own models and interpret results. Learning outcomes, key concepts and end-of-chapter review questions (with full solutions online) highlight the main chapter takeaways and allow students to self-assess their understanding. Building on the successful data- and problem-driven approach of previous editions, this third edition has been updated with new data, extensive examples and additional introductory material on mathematics, making the book more accessible to students encountering econometrics for the first time. A companion website, with numerous student and instructor resources, completes the learning package.

Chris Brooks is Professor of Finance and Director of Research at the ICMA Centre, Henley Business School, University of Reading, UK where he also obtained his PhD. He has diverse research interests and has published over a hundred articles in leading academic and practitioner journals, and six books. He is Associate Editor of several journals, including the Journal of Business Finance and Accounting, the International Journal of Forecasting and the British Accounting Review. He acts as consultant and advisor for various banks, corporations and professional bodies in the fields of finance, real estate, and econometrics.

Introductory Econometrics for Finance

THIRD EDITION

Chris Brooks

The ICMA Centre, Henley Business School, University of Reading

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is a part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107661455

© Chris Brooks 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002 Second edition 2008 Third edition published 2014

Printed in the United Kingdom by MPG Printgroup Ltd, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

ISBN 978-1-107-03466-2 Hardback ISBN 978-1-107-66145-5 Paperback

Additional resources for this publication at www.cambridge.org/brooks

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

•

	List o List o List o Prefa	of figures of tables of boxes of screenshots ce to the third edition owledgements	page xii xv xvii xix xxi xxv
1	Intro	duction	1
	1.1	What is econometrics?	2
	1.2	Is financial econometrics different from 'economic	
		econometrics'?	2
	1.3	Types of data	4
	1.4	Returns in financial modelling	7
	1.5	Steps involved in formulating an econometric model	11
	1.6	Points to consider when reading articles in empirical	
		finance	12
	1.7	A note on Bayesian versus classical statistics	13
	1.8	An introduction to EViews	14
	1.9	Further reading	24
	1.10	Outline of the remainder of this book	24
2	Math	ematical and statistical foundations	28
	2.1	Functions	28
	2.2	Differential calculus	37
	2.3	Matrices	41
	2.4	Probability and probability distributions	56
	2.5	Descriptive statistics	61
3	A bri	ef overview of the classical linear regression model	75
	3.1	What is a regression model?	75
	3.2	Regression versus correlation	76
	3.3	Simple regression	76
	3.4	Some further terminology	84
	3.5	Simple linear regression in EViews – estimation of an optimal	
		hedge ratio	86
		5	

-			
C	nn	ter	htc.
		ιcι	113

	3.6	The assumptions underlying the classical linear regression	0.0
	a =	model	90
	3.7	Properties of the OLS estimator	91
	3.8	Precision and standard errors	93
	3.9	An introduction to statistical inference	98
	3.10	A special type of hypothesis test: the <i>t</i> -ratio	111
	3.11	An example of a simple <i>t</i> -test of a theory in finance: can US	
		mutual funds beat the market?	113
	3.12	Can UK unit trust managers beat the market?	115
	3.13	The overreaction hypothesis and the UK stock market	116
	3.14	The exact significance level	120
	3.15	Hypothesis testing in EViews – example 1: hedging revisited	121
	3.16	Hypothesis testing in EViews – example 2: the CAPM	123
		Appendix: Mathematical derivations of CLRM results	127
4		er development and analysis of the classical linear	
	_	ession model	134
	4.1	Generalising the simple model to multiple linear regression	134
	4.2	The constant term	135
	4.3	How are the parameters (the elements of the β vector) calculated	
		in the generalised case?	137
	4.4	Testing multiple hypotheses: the <i>F</i> -test	139
	4.5	Sample EViews output for multiple hypothesis tests	144
	4.6	Multiple regression in EViews using an APT-style model	145
	4.7	Data mining and the true size of the test	150
	4.8	Goodness of fit statistics	151
	4.9	Hedonic pricing models	156
	4.10	Tests of non-nested hypotheses	159
	4.11	Quantile regression	161
		Appendix 4.1: Mathematical derivations of CLRM results	168
		Appendix 4.2: A brief introduction to factor models and principal	
		components analysis	170
5	Class	sical linear regression model assumptions and diagnostic tests	179
	5.1	Introduction	179
	5.2	Statistical distributions for diagnostic tests	180
	5.3	Assumption 1: $E(u_t) = 0$	181
	5.4	Assumption 2: $var(u_t) = \sigma^2 < \infty$	181
	5.5	Assumption 3: $cov(u_i, u_j) = 0$ for $i \neq j$	188
	5.6	Assumption 4: the x_t are non-stochastic	208
	5.7	Assumption 5: the disturbances are normally distributed	209
	5.8	Multicollinearity	217
	5.9	Adopting the wrong functional form	220
	5.10	Omission of an important variable	224
	5.11	Inclusion of an irrelevant variable	225

Contents

		Parameter stability tests	226
	5.13	Measurement errors	235
	5.14	A strategy for constructing econometric models and a discussion	
		of model-building philosophies	238
	5.15	Determinants of sovereign credit ratings	240
6	Univa	ariate time series modelling and forecasting	251
	6.1	Introduction	251
	6.2	Some notation and concepts	252
	6.3	Moving average processes	256
	6.4	Autoregressive processes	259
	6.5	The partial autocorrelation function	266
	6.6	ARMA processes	268
	6.7	Building ARMA models: the Box–Jenkins approach	273
	6.8	Constructing ARMA models in EViews	276
	6.9	Examples of time series modelling in finance	281
	6.10	Exponential smoothing	283
	6.11	Forecasting in econometrics	285
	6.12	Forecasting using ARMA models in EViews	296
	6.13	Exponential smoothing models in EViews	298
7	Multi	variate models	305
	7.1	Motivations	305
	7.2	Simultaneous equations bias	307
	7.3	So how can simultaneous equations models be validly estimated?	308
	7.4	Can the original coefficients be retrieved from the πs ?	309
	7.5	Simultaneous equations in finance	311
	7.6	A definition of exogeneity	312
	7.7	Triangular systems	314
	7.8	Estimation procedures for simultaneous equations systems	315
	7.9	An application of a simultaneous equations approach to modelling	
		bid–ask spreads and trading activity	318
	7.10	Simultaneous equations modelling using EViews	323
	7.11	Vector autoregressive models	326
	7.12	Does the VAR include contemporaneous terms?	332
		Block significance and causality tests	333
		VARs with exogenous variables	335
	7.15	Impulse responses and variance decompositions	336
	7.16	VAR model example: the interaction between property returns	
		and the macroeconomy	338
	7.17	VAR estimation in EViews	344
8	Mod	elling long-run relationships in finance	353
-	8.1	Stationarity and unit root testing	353
	8.2	Tests for unit roots in the presence of structural breaks	365

vii

:

0-		-
LO	nte	nts

	8.3	Testing for unit roots in EViews	369
	8.4	Cointegration	373
	8.5	Equilibrium correction or error correction models	375
	8.6	Testing for cointegration in regression: a residuals-based approach	376
	8.7	Methods of parameter estimation in cointegrated systems	377
	8.8	Lead–lag and long-term relationships between spot and futures	
		markets	380
	8.9	Testing for and estimating cointegrating systems using the	
		Johansen technique based on VARs	386
	8.10	Purchasing power parity	390
	8.11		391
	8.12	Testing the expectations hypothesis of the term structure of	
		interest rates	398
	8.13	Testing for cointegration and modelling cointegrated systems	
		using EViews	400
		0	
9	Mod	elling volatility and correlation	415
	9.1	Motivations: an excursion into non-linearity land	415
	9.2	Models for volatility	420
	9.3	Historical volatility	420
	9.4	Implied volatility models	421
	9.5	Exponentially weighted moving average models	421
	9.6	Autoregressive volatility models	422
	9.7	Autoregressive conditionally heteroscedastic (ARCH) models	423
	9.8	Generalised ARCH (GARCH) models	428
	9.9	Estimation of ARCH/GARCH models	431
	9.10	Extensions to the basic GARCH model	439
	9.11	Asymmetric GARCH models	440
	9.12	The GJR model	440
	9.13	The EGARCH model	441
	9.14	GJR and EGARCH in EViews	441
	9.15	Tests for asymmetries in volatility	443
	9.16		445
	9.17	Uses of GARCH-type models including volatility forecasting	446
	9.18		
		non-linear models	452
	9.19	Volatility forecasting: some examples and results from the	
		literature	454
	9.20	Stochastic volatility models revisited	461
	9.21	Forecasting covariances and correlations	463
	9.22	-	
		examples	464
	9.23	Simple covariance models	466
	9.24	1	467
		Direct correlation models	471

Contents

	9.26	Extensions to the basic multivariate GARCH model	472
	9.27	A multivariate GARCH model for the CAPM with	
	0.20	time-varying covariances	474
	9.28	Estimating a time-varying hedge ratio for FTSE stock index	475
	9.29	returns Multivariata stachestic valatility models	475 478
	9.29	Multivariate stochastic volatility models Estimating multivariate GARCH models using EViews	470
	9.30	Appendix: Parameter estimation using maximum likelihood	484
		Tippenann Faranneer essenaren asing manneerin menneeri	101
10	Switch	ning models	490
	10.1	Motivations	490
	10.2	Seasonalities in financial markets: introduction and literature	
		review	492
	10.3	Modelling seasonality in financial data	493
	10.4	Estimating simple piecewise linear functions	500
	10.5	Markov switching models	502
	10.6	A Markov switching model for the real exchange rate	503
	10.7	A Markov switching model for the gilt-equity yield ratio	506
	10.8	Estimating Markov switching models in EViews	510
	10.9	Threshold autoregressive models	513
	10.10	Estimation of threshold autoregressive models	515
	10.11	Specification tests in the context of Markov switching and	F 1 <i>C</i>
	10.10	threshold autoregressive models: a cautionary note	516
	10.12	A SETAR model for the French franc–German mark exchange	
	10.12	rate	517
	10.13	Threshold models and the dynamics of the FTSE 100 index and index futures markets	519
	10.14		519
	10.14	A note on regime switching models and forecasting accuracy	523
11	Panel	data	526
	11.1	Introduction – what are panel techniques and why are they used?	526
	11.2	What panel techniques are available?	528
	11.3	The fixed effects model	529
	11.4	Time-fixed effects models	531
	11.5	Investigating banking competition using a fixed effects model	532
	11.6	The random effects model	536
	11.7	Panel data application to credit stability of banks in Central and	
		Eastern Europe	537
	11.8	Panel data with EViews	541
	11.9	Panel unit root and cointegration tests	547
	11.10	Further reading	557
12	Limite	d dependent variable models	559
	12.1	Introduction and motivation	559
	12.2	The linear probability model	560

ix

^		
LOI	nter	าเร

	12.3	The logit model	562
	12.4	Using a logit to test the pecking order hypothesis	563
	12.5	The probit model	565
	12.6	Choosing between the logit and probit models	565
	12.7	Estimation of limited dependent variable models	565
	12.8	Goodness of fit measures for linear dependent	
		variable models	567
	12.9	Multinomial linear dependent variables	568
	12.10	The pecking order hypothesis revisited – the choice between	
		financing methods	571
	12.11	Ordered response linear dependent variables models	574
	12.12	Are unsolicited credit ratings biased downwards? An ordered	
		probit analysis	574
	12.13	Censored and truncated dependent variables	579
	12.14	Limited dependent variable models in EViews	583
		Appendix: The maximum likelihood estimator for logit and	
		probit models	589
13	Simula	ation methods	591
	13.1	Motivations	591
	13.2	Monte Carlo simulations	592
	13.3	Variance reduction techniques	593
	13.4	Bootstrapping	597
	13.5	Random number generation	600
	13.6	Disadvantages of the simulation approach to econometric or	
		financial problem solving	601
	13.7	An example of Monte Carlo simulation in econometrics:	
		deriving a set of critical values for a Dickey–Fuller test	603
	13.8	An example of how to simulate the price of a financial	
		option	608
	13.9	An example of bootstrapping to calculate capital risk	
		requirements	613
14	Cond	ucting empirical research or doing a project or	
	disser	tation in finance	626
	14.1	What is an empirical research project and what is it for?	626
	14.2	Selecting the topic	627
	14.3	Sponsored or independent research?	629
	14.4	The research proposal	631
	14.5	Working papers and literature on the internet	631
	14.6	Getting the data	633
	14.7	Choice of computer software	634
	14.8	Methodology	634
	14.9	Event studies	634
	14.10	Tests of the CAPM and the Fama–French Methodology	648

<u> </u>		
Con	ten	IS .
0011	(CIII	

٠	
٠	
•	
•	
•	

xi

	14.11 How might the finished project look?14.12 Presentational issues	662 666
Appendix 1 Appendix 2	Sources of data used in this book Tables of statistical distributions	667 668
	Glossary References Index	680 697 710

Figures

1.1	Steps involved in forming an	4.4
0.1	econometric model page	11
2.1	A plot of hours studied (x) against	20
2.2	grade-point average (γ)	30
2.2	Examples of different straight line	20
	graphs	30
2.3	Examples of quadratic functions	31
2.4	A plot of an exponential function	34
2.5	A plot of a logarithmic function	35
2.6	The tangent to a curve	39
2.7	The probability distribution	
	function for the sum of two dice	58
2.8	The pdf for a normal distribution	59
2.9	The cdf for a normal distribution	60
2.10	A normal versus a skewed	
	distribution	67
2.11	A normal versus a leptokurtic	
	distribution	67
3.1	Scatter plot of two variables,	
	y and x	77
3.2	Scatter plot of two variables with a	
	line of best fit chosen by eye	79
3.3	Method of OLS fitting a line to	
	the data by minimising the sum of	
	squared residuals	79
3.4	Plot of a single observation,	
	together with the line of best fit,	
	the residual and the fitted value	80
3.5	Scatter plot of excess returns on	00
0.0	fund XXX versus excess returns	
	on the market portfolio	82
3.6	No observations close to the	02
5.0	y-axis	84
3.7	<i>y</i> -axis Effect on the standard errors of	04
3.7	the coefficient estimates when	
		OF
	$(x_t - \bar{x})$ are narrowly dispersed	95

	3.8	Effect on the standard errors of	
		the coefficient estimates when	
		$(x_t - \bar{x})$ are widely dispersed	96
)	3.9	Effect on the standard errors of x_t^2	
		large	96
)	3.10	Effect on the standard errors of	
		x_t^2 small	97
ŀ	3.11	The <i>t</i> -distribution versus the	
5		normal	101
)	3.12	Rejection regions for a two-sided	
		5% hypothesis test	103
8	3.13	Rejection region for a one-sided	
)		hypothesis test of the form	
)		$H_0: \beta = \beta^*, H_1: \beta < \beta^*$	104
	3.14	Rejection region for a one-sided	
7		hypothesis test of the form	
		$H_0: \beta = \beta^*, \ H_1: \beta > \beta^*$	104
7	3.15	Critical values and rejection	
		regions for a $t_{20;5\%}$	108
7	3.16	Frequency distribution of <i>t</i> -ratios	
		of mutual fund alphas (gross of	
)		transactions costs). Source: Jensen	
		(1968). Reprinted with the	
		permission of Blackwell Publishers	114
)	3.17	Frequency distribution of <i>t</i> -ratios	
		of mutual fund alphas (net of	
		transactions costs). Source: Jensen	
)		(1968). Reprinted with the	
		permission of Blackwell Publishers	114
	3.18	Performance of UK unit trusts,	
2		1979–2000	116
	4.1	$R^2 = 0$ demonstrated by a flat	
ŀ		estimated line, i.e. a zero slope	
		coefficient	153
	4.2	$R^2 = 1$ when all data points lie	
,		exactly on the estimated line	154

. . . .

List of figures

5.1	Effect of no intercept on a			model with negative coefficient:	
	regression line	181		$\gamma_t = -0.5\gamma_{t-1} + u_t$	272
5.2	Graphical illustration of		6.7	Sample autocorrelation and partial	
	heteroscedasticity	182		autocorrelation functions for a	
5.3	Plot of \hat{u}_t against \hat{u}_{t-1} , showing			non-stationary model (i.e. a unit	
	positive autocorrelation	191		coefficient): $y_t = y_{t-1} + u_t$	272
5.4	Plot of \hat{u}_t over time, showing		6.8	Sample autocorrelation and	
	positive autocorrelation	191		partial autocorrelation functions	
5.5	Plot of \hat{u}_t against \hat{u}_{t-1} , showing	1 / 1		for an ARMA(1, 1) model:	
0.0	negative autocorrelation	192		$y_t = 0.5y_{t-1} + 0.5u_{t-1} + u_t$	273
5.6		192	6.9		215
5.0	Plot of \hat{u}_t over time, showing	102	0.7	Use of in-sample and out-of-	200
	negative autocorrelation	192	F 1	sample periods for analysis	286
5.7	Plot of \hat{u}_t against \hat{u}_{t-1} , showing	100	7.1	Impulse responses and standard	
	no autocorrelation	193		error bands for innovations in	
5.8	Plot of \hat{u}_t over time, showing no			unexpected inflation equation	
	autocorrelation	193		errors	343
5.9	Rejection and non-rejection		7.2	Impulse responses and standard	
	regions for DW test	196		error bands for innovations in the	
5.10	Regression residuals from stock			dividend yields	343
	return data, showing large outlier		8.1	Value of R^2 for 1,000 sets of	
	for October 1987	212		regressions of a non-stationary	
5.11	Possible effect of an outlier on			variable on another independent	
	OLS estimation	213		non-stationary variable	354
5.12	Plot of a variable showing		8.2	Value of <i>t</i> -ratio of slope	
	suggestion for break date	231		coefficient for 1,000 sets of	
6.1	Autocorrelation function for	201		regressions of a non-stationary	
0.1	sample MA(2) process	259		variable on another independent	
6.2		237		-	355
0.2	Sample autocorrelation and		0.2	non-stationary variable	358
	partial autocorrelation functions		8.3	Example of a white noise process	330
	for an MA(1) model:	070	8.4	Time series plot of a random	
	$y_t = -0.5u_{t-1} + u_t$	270		walk versus a random walk with	250
6.3	Sample autocorrelation and			drift	359
	partial autocorrelation functions		8.5	Time series plot of a deterministic	
	for an MA(2) model:			trend process	359
	$\gamma_t = 0.5u_{t-1} - 0.25u_{t-2} + u_t$	270	8.6	Autoregressive processes with	
6.4	Sample autocorrelation and partial			differing values of ϕ (0, 0.8, 1)	360
	autocorrelation functions for a		9.1	Daily S&P returns for August	
	slowly decaying AR(1) model:			2003–August 2013	423
	$\gamma_t = 0.9\gamma_{t-1} + u_t$	271	9.2	The problem of local optima in	
6.5	Sample autocorrelation and partial			maximum likelihood estimation	433
	autocorrelation functions for a		9.3	News impact curves for S&P500	
	more rapidly decaying AR(1)			returns using coefficients implied	
	model: $y_t = 0.5 y_{t-1} + u_t$	271		from GARCH and GJR model	
6.6	Sample autocorrelation and partial			estimates	445
	autocorrelation functions for a		9.4	Three approaches to hypothesis	
	more rapidly decaying AR(1)			testing under maximum likelihood	452
				g enter mennem mennood	.51

xiii

.

	•	
	•	
	•	
xiv		List of figures

9.5	Time-varying hedge ratios			distribution with the same mean	
	derived from symmetric and			and variance. Source: Brooks and	
	asymmetric BEKK models for			Persand (2001b)	507
	FTSE returns. Source: Brooks,		10.6	Value of GEYR and probability	
	Henry and Persand (2002)	478		that it is in the High GEYR	
10.1	Sample time series plot illustrating			regime for the UK. Source: Brooks	
	a regime shift	491		and Persand (2001b)	509
10.2	Use of intercept dummy variables		12.1	The fatal flaw of the linear	
	for quarterly data	494		probability model	561
10.3	Use of slope dummy variables	497	12.2	The logit model	562
10.4	Piecewise linear model with		12.3	Modelling charitable donations as	
	threshold x^*	501		a function of income	580
10.5	Unconditional distribution of US		12.4	Fitted values from the failure	
	GEYR together with a normal			probit regression	587

Tables

1.1	How to construct a series in real	
	terms from a nominal one page	ge 11
2.1	Sample data on hours of study and	
	grades	29
3.1	Sample data on fund XXX to	
	motivate OLS estimation	82
3.2	Critical values from the standard	
	normal versus <i>t</i> -distribution	102
3.3	Classifying hypothesis testing	
	errors and correct conclusions	110
3.4	Summary statistics for the	
	estimated regression results	
	for (3.34)	113
3.5	Summary statistics for unit trust	
	returns, January 1979–May 2000	115
3.6	CAPM regression results for unit	
	trust returns, January 1979–	
	May 2000	116
3.7	Is there an overreaction effect in	
	the UK stock market?	119
3.8	Part of the EViews regression	
	output revisited	121
4.1	Hedonic model of rental values in	
	Quebec City, 1990. Dependent	
	variable: Canadian dollars per	
	month	157
4.2	OLS and quantile regression	
	results for the Magellan fund	165
4A.1	Principal component ordered	
	eigenvalues for Dutch interest	
	rates, 1962–70	173
4A.2	Factor loadings of the first and	
	second principal components for	
	Dutch interest rates, 1962–70	174
5.1	Constructing a series of lagged	
	values and first differences	190

5.2	Determinants and impacts of	
	sovereign credit ratings	243
5.3	Do ratings add to public	
	information?	245
5.4	What determines reactions to	
	ratings announcements?	247
6.1	Uncovered interest parity test	
	results	283
6.2	Forecast error aggregation	292
7.1	Call bid–ask spread and trading	
	volume regression	321
7.2	Put bid–ask spread and trading	
	volume regression	321
7.3	Granger causality tests and	
	implied restrictions on VAR	
	models	335
7.4	Marginal significance levels	
	associated with joint <i>F</i> -tests	341
7.5	Variance decompositions for	
	the property sector index	
	residuals	342
8.1	Critical values for DF tests (Fuller,	
	1976, p. 373)	362
8.2	Recursive unit root tests for	
	interest rates allowing for	
	structural breaks	368
8.3	DF tests on log-prices and returns	
	for high frequency FTSE data	381
8.4	Estimated potentially	
	cointegrating equation and test for	
	cointegration for high frequency	
	FTSE data	382
8.5	Estimated error correction model	
	for high frequency FTSE data	382
8.6	Comparison of out-of-sample	
	forecasting accuracy	383

List of tables

8.7	Trading profitability of the error		11.1
	correction model with cost of		
	carry	385	
8.8	Cointegration tests of PPP with		11.2
	European data	392	
8.9	DF tests for international bond		11.3
	indices	393	
8.10	Cointegration tests for pairs of		
	international bond indices	394	11.4
8.11	Johansen tests for cointegration		
	between international bond		
	yields	394	11.5
8.12	Variance decompositions for VAR		
	of international bond yields	396	
8.13	Impulse responses for VAR of		12.1
	international bond yields	397	
8.14	Tests of the expectations		12.2
	hypothesis using the US zero		
	coupon yield curve with monthly		12.3
	data	400	
9.1	GARCH versus implied volatility	457	12.4
9.2	EGARCH versus implied	107	
	volatility	458	
9.3	Out-of-sample predictive power	100	12.5
	for weekly volatility forecasts	460	
9.4	Comparisons of the relative	100	
/. .	information content of out-of-		13.1
	sample volatility forecasts	461	10.1
9.5	Hedging effectiveness: summary	101	13.2
7.5	statistics for portfolio returns	477	10.2
10.1	Values and significances of days of	т//	13.3
10.1	the week coefficients	496	13.5
10.2	Day-of-the-week effects with the	490	
10.2	inclusion of interactive dummy		
		499	14.1
10.2	variables with the risk proxy	477	14.1
10.3	Estimates of the Markov switching	FOF	14.2
10 /	model for real exchange rates	505	14.2
10.4	Estimated parameters for the	500	1/2
10 E	Markov switching models	508	14.3
10.5	SETAR model for FRF–DEM	518	1//
10.6	FRF–DEM forecast accuracies	519	14.4
10.7	Linear AR (3) model for the basis	521	
10.8	A two-threshold SETAR model		14.5
	for the basis	522	

	11.1	Tests of banking market	
		equilibrium with fixed effects	
		panel models	534
	11.2	Tests of competition in banking	
2		with fixed effects panel models	535
	11.3	Results of random effects panel	
		regression for credit stability of	
		Central and East European banks	540
-	11.4	Panel unit root test results for	
		economic growth and financial	
		development	553
-	11.5	Panel cointegration test results for	
		economic growth and financial	
)		development	554
	12.1	Logit estimation of the probability	
'		of external financing	564
	12.2	Multinomial logit estimation of	
		the type of external financing	573
	12.3	Ordered probit model results for	
)		the determinants of credit ratings	577
'	12.4	Two-step ordered probit model	
		allowing for selectivity bias in the	
;		determinants of credit ratings	578
	12.5	Marginal effects for logit and	
)		probit models for probability of	
		MSc failure	588
	13.1	EGARCH estimates for currency	
		futures returns	616
	13.2	Autoregressive volatility estimates	
'		for currency futures returns	617
	13.3	Minimum capital risk	
)		requirements for currency futures	
		as a percentage of the initial value	
		of the position	620
)	14.1	Journals in finance and	
		econometrics	630
	14.2	Useful internet sites for financial	
		literature	632
;	14.3	Fama and MacBeth's results on	
;		testing the CAPM	652
)	14.4	Results from Fama–MacBeth	
		procedure using EViews	661
	14.5	Suggested structure for a typical	
		dissertation or project	662

Boxes

1.1	Examples of the uses of	
	econometrics	page 2
1.2	Time series data	4
1.3	Log returns	3
1.4	Points to consider when reading a	ı
	published paper	13
1.5	Features of EViews	22
2.1	The roots of a quadratic equation	32
2.2	Manipulating powers and their	
	indices	33
2.3	The laws of logs	35
2.4	The population and the sample	62
3.1	Names for γ and xs in regression	
	models	76
3.2	Reasons for the inclusion of the	
	disturbance term	78
3.3	Assumptions concerning	
	disturbance terms and their	
	interpretation	93
3.4	Standard error estimators	95
3.5	Conducting a test of significance	103
3.6	Carrying out a hypothesis test	
	using confidence intervals	100
3.7	The test of significance and	
	confidence interval approaches	
	compared	10
3.8	Type I and type II errors	111
3.9	Reasons for stock market	
	overreactions	117
3.10	Ranking stocks and forming	
	portfolios	118
3.11	Portfolio monitoring	118
4.1	The relationship between the	
	regression F -statistic and R^2	158
4.2	Selecting between models	160
5.1	Conducting White's test	184

	5.2	'Solutions' for heteroscedasticity	186
2	5.3	Conditions for <i>DW</i> to be a valid	
1		test	197
3	5.4	Conducting a Breusch–Godfrey	
		test	198
3	5.5	The Cochrane–Orcutt procedure	201
2	5.6	Observations for the dummy	
2		variable	212
	5.7	Conducting a Chow test	226
3	6.1	The stationarity condition for an	
3 5 2		AR(p) model	260
2	6.2	The invertibility condition for an	
		MA(2) model	267
5	6.3	Naive forecasting methods	288
	7.1	Determining whether an equation	
3		is identified	310
	7.2	Conducting a Hausman test for	
		exogeneity	312
L	7.3	Forecasting with VARs	334
5	8.1	Stationarity tests	365
3	8.2	Multiple cointegrating	
		relationships	379
5	9.1	Testing for 'ARCH effects'	426
	9.2	Estimating an ARCH or	
		GARCH model	431
7	9.3	Using maximum likelihood	
L		estimation in practice	434
	10.1	How do dummy variables work?	494
7	11.1	Fixed or random effects?	537
	12.1	Parameter interpretation for probit	
3		and logit models	566
3	12.2	The differences between censored	
		and truncated dependent variables	581
3	13.1	Conducting a Monte Carlo	
)		simulation	593
1	13.2	Re-sampling the data	599

xviii		List of boxes
	•	
	•	
	•	
	•	

- **13.3** Re-sampling from the residuals
- 13.4 Setting up a Monte Carlo simulation13.5 Simulating the price of an Asian
 - option 608
- 60013.6Generating draws from a
GARCH process60960414.1Possible types of research project628

Screenshots

•••••

1.1	Creating a workfile	page	10
1.2	Importing Excel data into the		
	workfile		17
1.3	The workfile containing loaded		
	data		18
1.4	Summary statistics for a series		20
1.5	A line graph		2
2.1	Setting up a variance-covariance		
	matrix in Excel		52
2.2	The spreadsheet for constructing		
	the efficient frontier		53
2.3	Completing the Solver window		54
2.4	A plot of the completed efficient	-	
	frontier		55
2.5	The capital market line and		
	efficient frontier		50
2.6	Sample summary statistics in		
	EViews		68
3.1	How to deal with dated		
	observations in EViews		8
3.2	Summary statistics for spot and		
	futures		88
3.3	Equation estimation window		89
3.4	Estimation results		9(
3.5	Plot of two series	1	2
4.1	Stepwise procedure equation		
	estimation window	1	48
4.2	Stepwise procedure estimation		
	options window	1	48
4.3	Quantile regression estimation		
	window	1	6
4.4	Conducting PCA in EViews	1	70
5.1	Regression options window	1	89
5.2	Non-normality test results		1
5.3	Regression residuals, actual value		
	and fitted series		1

5	5.4	Chow test for parameter stability	233
	5.5	Plotting recursive coefficient	
7		estimates	235
	5.6	CUSUM test graph	236
3	6.1	Estimating the correlogram	277
)	6.2	The options available when	
l		producing forecasts	297
	6.3	Dynamic forecasts for the	
2		percentage changes in house prices	298
	6.4	Static forecasts for the percentage	
3		changes in house prices	299
1	6.5	Estimating exponential smoothing	
		models	300
5	7.1	Estimating the inflation equation	324
	7.2	Estimating the rsandp equation	327
5	7.3	VAR inputs screen	344
	7.4	Constructing the VAR impulse	
3		responses	349
	7.5	Combined impulse response	
7		graphs	349
	7.6	Variance decomposition graphs	350
3	8.1	Options menu for unit root tests	370
)	8.2	Actual, fitted and residual plot to	
)		check for stationarity	401
5	8.3	Johansen cointegration test	404
	8.4	VAR specification for Johansen	
3		tests	409
	9.1	Estimating a GARCH-type model	436
3	9.2	GARCH model estimation	
		options	437
5	9.3	Forecasting from GARCH models	450
5	9.4	Dynamic forecasts of the	
)		conditional variance	450
1	9.5	Static forecasts of the conditional	
		variance	451
5	9.6	Making a system	480
		C ,	

List of screenshots

9.7	Multivariate GARCH estimation	
	options	481
10.1	Estimating a Markov switching	
	model	511
10.2	Smoothed probabilities of being in	
	regimes 1 and 2	513
11.1	Panel workfile create window	542

11.2	Panel workfile structure window	543
11.3	Panel unit root test window	556
12.1	Equation estimation window for	
	limited dependent variables	584
12.2	Equation estimation options for	

12.2Equation estimation options for
limited dependent variables58513.1Running an EViews program605

хх

••••••

Sales of the first two editions of this book surpassed expectations (at least those of the author). Almost all of those who have contacted the author seem to like the book, and while other textbooks have been published since in the broad area of financial econometrics, none are really at the introductory level. All of the motivations for the first edition, described below, seem just as important today. Given that the book seems to have gone down well with readers, I have left the style largely unaltered but changed the structure slightly and added new material.

The main motivations for writing the first edition of the book were:

- To write a book that focused on *using and applying* the techniques rather than deriving proofs and learning formulae.
- To write an accessible textbook that required no prior knowledge of econometrics, but which also covered more recently developed approaches usually only found in more advanced texts.
- To use examples and terminology from finance rather than economics since there are many introductory texts in econometrics aimed at students of economics but none for students of finance.
- To litter the book with case studies of the use of econometrics in practice taken from the academic finance literature.
- To include sample instructions, screen dumps and computer output from a popular econometrics package. This enabled readers to see how the techniques can be implemented in practice.
- To develop a companion web site containing answers to end of chapter questions, PowerPoint slides and other supporting materials.

What is new in the third edition

The third edition includes a number of important new features:

(1) Students of finance have enormously varying backgrounds, and in particular varying levels of training in elementary mathematics and statistics. In order to make the book more self-contained, the material that was previously buried in an appendix at the end of the book has now been considerably expanded and enhanced, and is now placed in a new chapter 2. As a result, all of the previous chapters 2 to 13 have been shunted forward by a chapter (so the

previous chapter 2 becomes chapter 3, 3 becomes 4, and so on). What was the concluding chapter in the second edition, chapter 14, has now been removed (with some of the content worked into other chapters) so that there are also fourteen chapters in the third edition.

- (2) An extensive glossary has been added at the end of the book to succinctly explain all of the technical terms used in the text.
- (3) As a result of the length of time it took to write the book, to produce the final product and the time that has elapsed since then, the data and examples used in the second edition are already several years old. The data, EViews instructions and screenshots have been fully updated. EViews version 8.0, the latest available at the time of writing, has been used throughout. The data continue to be drawn from the same freely available sources as in the previous edition.
- (4) Two of the most important uses of statistical models by students in their courses tend to be the methodology developed in a series of papers by Fama and French, and the event study approach. Both of these are now described in detail with examples in chapter 14.
- (5) New material has been added in the appropriate places in the book covering panel unit root and cointegration tests; measurement error in variables; unit root testing with structural breaks; and conditional correlation models.

Motivations for the first edition

This book had its genesis in two sets of lectures given annually by the author at the ICMA Centre (formerly ISMA Centre), Henley Business School, University of Reading and arose partly from several years of frustration at the lack of an appropriate textbook. In the past, finance was but a small sub-discipline drawn from economics and accounting, and therefore it was generally safe to assume that students of finance were well grounded in economic principles; econometrics would be taught using economic motivations and examples.

However, finance as a subject has taken on a life of its own in recent years. Drawn in by perceptions of exciting careers in the financial markets, the number of students of finance grew phenomenally all around the world. At the same time, the diversity of educational backgrounds of students taking finance courses has also expanded. It is not uncommon to find undergraduate students of finance even without advanced high-school qualifications in mathematics or economics. Conversely, many with PhDs in physics or engineering are also attracted to study finance at the Masters level. Unfortunately, authors of textbooks failed to keep pace with the change in the nature of students. In my opinion, the currently available textbooks fall short of the requirements of this market in three main regards, which this book seeks to address:

 Books fall into two distinct and non-overlapping categories: the introductory and the advanced. Introductory textbooks are at the appropriate level for students with limited backgrounds in mathematics or statistics, but their focus is too narrow. They often spend too long deriving the most basic results, and treatment of important, interesting and relevant topics (such as simulations methods, VAR modelling, etc.) is covered in only the last few pages, if at all. The more advanced textbooks, meanwhile, usually require a quantum leap in the level of mathematical ability assumed of readers, so that such books cannot be used on courses lasting only one or two semesters, or where students have differing backgrounds. In this book, I have tried to sweep a broad brush over a large number of different econometric techniques that are relevant to the analysis of financial and other data.

- (2) Many of the currently available textbooks with broad coverage are too theoretical in nature and students can often, after reading such a book, still have no idea of how to tackle real-world problems themselves, even if they have mastered the techniques in theory. To this end, in this book, I have tried to present examples of the use of the techniques in finance, together with annotated computer instructions and sample outputs for an econometrics package (EViews). This should assist students who wish to learn how to estimate models for themselves - for example, if they are required to complete a project or dissertation. Some examples have been developed especially for this book, while many others are drawn from the academic finance literature. In my opinion, this is an essential but rare feature of a textbook that should help to show students how econometrics is really applied. It is also hoped that this approach will encourage some students to delve deeper into the literature, and will give useful pointers and stimulate ideas for research projects. It should, however, be stated at the outset that the purpose of including examples from the academic finance print is not to provide a comprehensive overview of the literature or to discuss all of the relevant work in those areas, but rather to illustrate the techniques. Therefore, the literature reviews may be considered deliberately deficient, with interested readers directed to the suggested readings and the references therein.
- (3) With few exceptions, almost all textbooks that are aimed at the introductory level draw their motivations and examples from economics, which may be of limited interest to students of finance or business. To see this, try motivating regression relationships using an example such as the effect of changes in income on consumption and watch your audience, who are primarily interested in business and finance applications, slip away and lose interest in the first ten minutes of your course.

Who should read this book?

The intended audience is undergraduates or Masters/MBA students who require a broad knowledge of modern econometric techniques commonly employed in the finance literature. It is hoped that the book will also be useful for researchers (both academics and practitioners), who require an introduction to the statistical tools commonly employed in the area of finance. The book can be used for courses covering financial time-series analysis or financial econometrics in undergraduate or postgraduate programmes in finance, financial economics, securities and investments.

Although the applications and motivations for model-building given in the book are drawn from finance, the empirical testing of theories in many other disciplines, such as management studies, business studies, real estate, economics and so on, may usefully employ econometric analysis. For this group, the book may also prove useful.

Finally, while the present text is designed mainly for students at the undergraduate or Masters level, it could also provide introductory reading in financial time series modelling for finance doctoral programmes where students have backgrounds which do not include courses in modern econometric techniques.

Pre-requisites for good understanding of this material

In order to make the book as accessible as possible, no prior knowledge of statistics, econometrics or algebra is required, although those with a prior exposure to calculus, algebra (including matrices) and basic statistics will be able to progress more quickly. The emphasis throughout the book is on a valid application of the techniques to real data and problems in finance.

In the finance and investment area, it is assumed that the reader has knowledge of the fundamentals of corporate finance, financial markets and investment. Therefore, subjects such as portfolio theory, the capital asset pricing model (CAPM) and Arbitrage Pricing Theory (APT), the efficient markets hypothesis, the pricing of derivative securities and the term structure of interest rates, which are frequently referred to throughout the book, are not explained from first principles in this text. There are very many good books available in corporate finance, in investments and in futures and options, including those by Brealey and Myers (2013), Bodie, Kane and Marcus (2011) and Hull (2011) respectively.

Acknowledgements

I am grateful to Gita Persand, Olan Henry, James Chong and Apostolos Katsaris, who assisted with various parts of the software applications for the first edition. I am also grateful to Hilary Feltham for assistance with chapter 2 and to Simone Varotto for useful discussions and advice concerning the EViews example used in chapter 11.

I would also like to thank Simon Burke, James Chong and Con Keating for detailed and constructive comments on various drafts of the first edition, Simon Burke for suggestions on parts of the second edition and Jo Cox for comments on part of the third edition. The first and second editions additionally benefited from the comments, suggestions and questions of Peter Burridge, Kyongwook Choi, Rishi Chopra, Araceli Ortega Diaz, Xiaoming Ding, Thomas Eilertsen, Waleid Eldien, Andrea Gheno, Christopher Gilbert, Kimon Gomozias, Cherif Guermat, Abid Hameed, Arty Khemlani, Margaret Lynch, David McCaffrey, Tehri Jokipii, Emese Lazar, Zhao Liuyan, Dimitri Lvov, Bill McCabe, Junshi Ma, David Merchan, Victor Murinde, Mikael Petitjean, Marcelo Perlin, Thai Pham, Jean-Sebastien Pourchet, Marcel Prokopczuk, Guilherme Silva, Jerry Sin, Silvia Stanescu, Yiguo Sun, Li Qui, Panagiotis Varlagas, Jakub Vojtek, Jue Wang and Meng-Feng Yen.

A number of people sent useful e-mails pointing out typos or inaccuracies in the first edition. To this end, I am grateful to Merlyn Foo, Jan de Gooijer and his colleagues, Mikael Petitjean, Fred Sterbenz and Birgit Strikholm.

Useful comments and software support from Quantitative Micro Software (QMS) (now IHS Global) are gratefully acknowledged. Any remaining errors are mine alone.

The publisher and author have used their best endeavours to ensure that the URLs for external web sites referred to in this book are correct and active at the time of going to press. However, the publisher and author have no responsibility for the web sites and can make no guarantee that a site will remain live or that the content is or will remain appropriate.

Introduction

Learning econometrics is in many ways like learning a new language. To begin with, nothing makes sense and it is as if it is impossible to see through the fog created by all the unfamiliar terminology. While the way of writing the models – the *notation* – may make the situation appear more complex, in fact it is supposed to achieve the exact opposite. The ideas themselves are mostly not so complicated, it is just a matter of learning enough of the language that everything fits into place. So if you have never studied the subject before, then persevere through this preliminary chapter and you will hopefully be on your way to being fully fluent in econometrics!

Learning outcomes

In this chapter, you will learn how to

- Compare nominal and real series and convert one to the other
- Distinguish between different types of data
- Describe the key steps involved in building an econometric model
- Calculate asset price returns
- Deflate series to allow for inflation
- Construct a workfile, import data and accomplish simple tasks in EViews

The chapter sets the scene for the book by discussing in broad terms the questions of what econometrics is, and what are the 'stylised facts' describing financial data that researchers in this area typically try to capture in their models? Some discussion is presented on the kinds of data we encounter in finance and how to work with them. Finally, the chapter collects together a number of preliminary issues relating to the construction of econometric models in finance and introduces the software that will be used in the remainder of the book for estimating the models.

- (1) Testing whether financial markets are weak-form informationally efficient
- (2) Testing whether the capital asset pricing model (CAPM) or arbitrage pricing theory (APT) represent superior models for the determination of returns on risky assets
- (3) Measuring and forecasting the volatility of bond returns
- (4) Explaining the determinants of bond credit ratings used by the ratings agencies
- (5) Modelling long-term relationships between prices and exchange rates
- (6) Determining the optimal hedge ratio for a spot position in oil
- (7) Testing technical trading rules to determine which makes the most money
- (8) Testing the hypothesis that earnings or dividend announcements have no effect on stock prices
- (9) Testing whether spot or futures markets react more rapidly to news
- (10) Forecasting the correlation between the stock indices of two countries.

1.1

What is econometrics?

The literal meaning of the word econometrics is 'measurement in economics'. The first four letters of the word suggest correctly that the origins of econometrics are rooted in economics. However, the main techniques employed for studying economic problems are of equal importance in financial applications. As the term is used in this book, financial econometrics will be defined as the *application of statistical techniques to problems in finance*. Financial econometrics can be useful for testing theories in finance, determining asset prices or returns, testing hypotheses concerning the relationships between variables, examining the effect on financial markets of changes in economic conditions, forecasting future values of financial variables and for financial decision-making. A list of possible examples of where econometrics may be useful is given in box 1.1.

The list in box 1.1 is of course by no means exhaustive, but it hopefully gives some flavour of the usefulness of econometric tools in terms of their financial applicability.

1.2

Is financial econometrics different from 'economic econometrics'?

As previously stated, the tools commonly used in financial applications are fundamentally the same as those used in economic applications, although the emphasis and the sets of problems that are likely to be encountered when analysing the two sets of data are somewhat different. Financial data often differ from macroeconomic data in terms of their frequency, accuracy, seasonality and other properties.

In economics, a serious problem is often a *lack of data at hand* for testing the theory or hypothesis of interest – this is often called a 'small samples problem'. It might be, for example, that data are required on government budget deficits, or population figures, which are measured only on an annual basis. If the methods used to measure these quantities changed a quarter of a century ago, then only at most twenty-five of these annual observations are usefully available.

Two other problems that are often encountered in conducting applied econometric work in the arena of economics are those of *measurement error* and *data revisions*. These difficulties are simply that the data may be estimated, or measured with error, and will often be subject to several vintages of subsequent revisions. For example, a researcher may estimate an economic model of the effect on national output of investment in computer technology using a set of published data, only to find that the data for the last two years have been revised substantially in the next, updated publication.

These issues are usually of less concern in finance. Financial data come in many shapes and forms, but in general the prices and other entities that are recorded are those at which trades *actually took place*, or which were *quoted* on the screens of information providers. There exists, of course, the possibility for typos or for the data measurement method to change (for example, owing to stock index re-balancing or re-basing). But in general the measurement error and revisions problems are far less serious in the financial context.

Similarly, some sets of financial data are observed at much *higher frequencies* than macroeconomic data. Asset prices or yields are often available at daily, hourly or minute-by-minute frequencies. Thus the number of observations available for analysis can potentially be very large – perhaps thousands or even millions, making financial data the envy of macro-econometricians! The implication is that more powerful techniques can often be applied to financial than economic data, and that researchers may also have more confidence in the results.

Furthermore, the analysis of financial data also brings with it a number of new problems. While the difficulties associated with handling and processing such a large amount of data are not usually an issue given recent and continuing advances in computer power, financial data often have a number of additional characteristics. For example, financial data are often considered very 'noisy', which means that it is more difficult to separate *underlying trends or patterns* from random and uninteresting features. Financial data are also almost always not normally distributed in spite of the fact that most techniques in econometrics assume that they are. High frequency data often contain additional 'patterns' which are the result of the way that the market works, or the way that prices are recorded. These features need to be considered in the model-building process, even if they are not directly of interest to the researcher.

One of the most rapidly evolving areas of financial application of statistical tools is in the modelling of market microstructure problems. 'Market microstructure' may broadly be defined as the process whereby *investors' preferences and desires are translated into financial market transactions*. It is evident that microstructure effects

Box 1.2 Time series data	
<i>Series</i> Industrial production Government budget deficit Money supply	<i>Frequency</i> Monthly or quarterly Annually Weekly
The value of a stock	As transactions occur

are important and represent a key difference between financial and other types of data. These effects can potentially impact on many other areas of finance. For example, market rigidities or frictions can imply that current asset prices do not fully reflect future expected cashflows (see the discussion in chapter 10 of this book). Also, investors are likely to require compensation for holding securities that are illiquid, and therefore embody a risk that they will be difficult to sell owing to the relatively high probability of a lack of willing purchasers at the time of desired sale. Measures such as volume or the time between trades are sometimes used as proxies for market liquidity.

A comprehensive survey of the literature on market microstructure is given by Madhavan (2000). He identifies several aspects of the market microstructure literature, including price formation and price discovery, issues relating to market structure and design, information and disclosure. There are also relevant books by O'Hara (1995), Harris (2002) and Hasbrouck (2007). At the same time, there has been considerable advancement in the sophistication of econometric models applied to microstructure problems. For example, an important innovation was the autoregressive conditional duration (ACD) model attributed to Engle and Russell (1998). An interesting application can be found in Dufour and Engle (2000), who examine the effect of the time between trades on the price-impact of the trade and the speed of price adjustment.

Types of data

1.3

There are broadly three types of data that can be employed in quantitative analysis of financial problems: time series data, cross-sectional data and panel data.

1.3.1 Time series data

Time series data, as the name suggests, are data that have been collected over a period of time on one or more variables. Time series data have associated with them a particular frequency of observation or frequency of collection of data points. The frequency is simply a measure of the *interval over*, or the *regularity with which*, the data are collected or recorded. Box 1.2 shows some examples of time series data.

A word on 'As transactions occur' is necessary. Much financial data does not start its life as being *regularly spaced*. For example, the price of common stock for a given company might be recorded to have changed whenever there is a new trade or quotation placed by the financial information recorder. Such recordings are very unlikely to be evenly distributed over time – for example, there may be no activity between, say, 5 p.m. when the market closes and 8.30 a.m. the next day when it reopens; there is also typically less activity around the opening and closing of the market, and around lunch time. Although there are a number of ways to deal with this issue, a common and simple approach is simply to select an appropriate frequency, and use as the observation for that time period the last prevailing price during the interval.

It is also generally a requirement that all data used in a model be of the *same frequency of observation*. So, for example, regressions that seek to estimate an arbitrage pricing model using monthly observations on macroeconomic factors must also use monthly observations on stock returns, even if daily or weekly observations on the latter are available.

The data may be *quantitative* (e.g. exchange rates, prices, number of shares outstanding), or *qualitative* (e.g. the day of the week, a survey of the financial products purchased by private individuals over a period of time, a credit rating, etc.).

Problems that could be tackled using time series data:

- How the value of a country's stock index has varied with that country's macroeconomic fundamentals
- How the value of a company's stock price has varied when it announced the value of its dividend payment
- The effect on a country's exchange rate of an increase in its trade deficit.

In all of the above cases, it is clearly the time dimension which is the most important, and the analysis will be conducted using the values of the variables over time.

1.3.2 Cross-sectional data

Cross-sectional data are data on one or more variables collected at a single point in time. For example, the data might be on:

- A poll of usage of internet stockbroking services
- A cross-section of stock returns on the New York Stock Exchange (NYSE)
- A sample of bond credit ratings for UK banks.

Problems that could be tackled using cross-sectional data:

- The relationship between company size and the return to investing in its shares
- The relationship between a country's GDP level and the probability that the government will default on its sovereign debt.

1.3.3 Panel data

Panel data have the dimensions of both time series and cross-sections, e.g. the daily prices of a number of blue chip stocks over two years. The estimation of panel regressions is an interesting and developing area, and will be examined in detail in chapter 11.

Fortunately, virtually all of the standard techniques and analysis in econometrics are equally valid for time series and cross-sectional data. For time series data, it is usual to denote the individual observation numbers using the index t, and the total number of observations available for analysis by T. For crosssectional data, the individual observation numbers are indicated using the index i, and the total number of observations available for analysis by N. Note that there is, in contrast to the time series case, no natural ordering of the observations in a cross-sectional sample. For example, the observations i might be on the price of bonds of different firms at a particular point in time, ordered alphabetically by company name. So, in the case of cross-sectional data, there is unlikely to be any useful information contained in the fact that Barclays follows Banco Santander in a sample of bank credit ratings, since it is purely by chance that their names both begin with the letter 'B'. On the other hand, in a time series context, the ordering of the data is relevant since the data are usually ordered chronologically.

In this book, the total number of observations in the sample will be given by T even in the context of regression equations that could apply either to cross-sectional or to time series data.

1.3.4 Continuous and discrete data

As well as classifying data as being of the time series or cross-sectional type, we could also distinguish them as being either continuous or discrete, exactly as their labels would suggest. *Continuous* data can take on any value and are not confined to take specific numbers; their values are limited only by precision. For example, the rental yield on a property could be 6.2%, 6.24% or 6.238%, and so on. On the other hand, *discrete* data can only take on certain values, which are usually integers (whole numbers), and are often defined to be count numbers.¹ For instance, the number of people in a particular underground carriage or the number of shares traded during a day. In these cases, having 86.3 passengers in the carriage or $5857^{1}/_{2}$ shares traded would not make sense. The simplest example of a discrete variable is a *Bernoulli* or binary random variable, which can only take the values 0 or 1 - for example, if we repeatedly tossed a coin, we could denote a head by 0 and a tail by 1.

¹ Discretely measured data do not necessarily have to be integers. For example, until they became 'decimalised', many financial asset prices were quoted to the nearest 1/16 or 1/32 of a dollar.

1.3.5 Cardinal, ordinal and nominal numbers

Another way in which we could classify numbers is according to whether they are cardinal, ordinal or nominal. *Cardinal* numbers are those where the actual numerical values that a particular variable takes have meaning, and where there is an equal distance between the numerical values. On the other hand, *ordinal* numbers can only be interpreted as providing a position or an ordering. Thus, for cardinal numbers, a figure of 12 implies a measure that is 'twice as good' as a figure of 6. Examples of cardinal numbers would be the price of a share or of a building, and the number of houses in a street. On the other hand, for an ordinal scale, a figure of 12 may be viewed as 'better' than a figure of 6, but could not be considered twice as good. Examples of ordinal numbers would be the position of a runner in a race (e.g. second place is better than fourth place, but it would make little sense to say it is 'twice as good') or the level reached in a computer game.

The final type of data that could be encountered would be where there is no natural ordering of the values at all, so a figure of 12 is simply different to that of a figure of 6, but could not be considered to be better or worse in any sense. Such data often arise when numerical values are arbitrarily assigned, such as telephone numbers or when codings are assigned to qualitative data (e.g. when describing the exchange that a US stock is traded on, '1' might be used to denote the NYSE, '2' to denote the NASDAQ and '3' to denote the AMEX). Sometimes, such variables are called *nominal* variables. Cardinal, ordinal and nominal variables may require different modelling approaches or at least different treatments, as should become evident in the subsequent chapters.

1.4

Returns in financial modelling

In many of the problems of interest in finance, the starting point is a time series of prices – for example, the prices of shares in Ford, taken at 4 p.m. each day for 200 days. For a number of statistical reasons, it is preferable not to work directly with the price series, so that raw price series are usually converted into series of returns. Additionally, returns have the added benefit that they are unit-free. So, for example, if an annualised return were 10%, then investors know that they would have got back £110 for a £100 investment, or £1,100 for a £1,000 investment, and so on.

There are two methods used to calculate returns from a series of prices, and these involve the formation of simple returns, and continuously compounded returns, which are achieved as follows:

Simple returns

Continuously compounded returns

$$R_t = \frac{p_t - p_{t-1}}{p_{t-1}} \times 100\% \qquad (1.1) \qquad r_t = 100\% \times \ln\left(\frac{p_t}{p_{t-1}}\right) \qquad (1.2)$$

Box 1.3 Log returns

- Log-returns have the nice property that they can be interpreted as continuously compounded returns – so that the frequency of compounding of the return does not matter and thus returns across assets can more easily be compared.
- (2) Continuously compounded returns are *time-additive*. For example, suppose that a weekly returns series is required and daily log returns have been calculated for five days, numbered 1 to 5, representing the returns on Monday through Friday. It is valid to simply add up the five daily returns to obtain the return for the whole week:

Monday return	$r_1 = \ln (p_1 / p_0) = \ln p_1 - \ln p_0$
Tuesday return	$r_2 = \ln \left(\frac{p_2}{p_1} \right) = \ln p_2 - \ln p_1$
Wednesday return	$r_3 = \ln (p_3/p_2) = \ln p_3 - \ln p_2$
Thursday return	$r_4 = \ln \left(p_4 / p_3 \right) = \ln p_4 - \ln p_3$
Friday return	$r_5 = \ln (p_5/p_4) = \ln p_5 - \ln p_4$
Return over the week	$\ln p_5 - \ln p_0 = \ln (p_5/p_0)$

where: R_t denotes the simple return at time t, r_t denotes the continuously compounded return at time t, p_t denotes the asset price at time t and ln denotes the natural logarithm.

If the asset under consideration is a stock or portfolio of stocks, the total return to holding it is the sum of the capital gain and any dividends paid during the holding period. However, researchers often ignore any dividend payments. This is unfortunate, and will lead to an underestimation of the total returns that accrue to investors. This is likely to be negligible for very short holding periods, but will have a severe impact on cumulative returns over investment horizons of several years. Ignoring dividends will also have a distortionary effect on the cross-section of stock returns. For example, ignoring dividends will imply that 'growth' stocks with large capital gains will be inappropriately favoured over income stocks (e.g. utilities and mature industries) that pay high dividends.

Alternatively, it is possible to adjust a stock price time series so that the dividends are added back to generate a *total return index*. If p_t were a total return index, returns generated using either of the two formulae presented above thus provide a measure of the total return that would accrue to a holder of the asset during time t.

The academic finance literature generally employs the log-return formulation (also known as log-price relatives since they are the log of the ratio of this period's price to the previous period's price). Box 1.3 shows two key reasons for this.

There is, however, also a disadvantage of using the log-returns. The simple return on a portfolio of assets is a weighted average of the simple returns on the

individual assets:

$$R_{pt} = \sum_{i=1}^{N} w_i R_{it}$$
(1.3)

But this does not work for the continuously compounded returns, so that they are not additive across a portfolio. The fundamental reason why this is the case is that the log of a sum is not the same as the sum of a log, since the operation of taking a log constitutes a *non-linear transformation*. Calculating portfolio returns in this context must be conducted by first estimating the value of the portfolio at each time period and then determining the returns from the aggregate portfolio values. Or alternatively, if we assume that the asset is purchased at time t - K for price p_{t-K} and then sold K periods later at price p_t , then if we calculate simple returns for each period, R_t , R_{t+1} , ..., R_K , the aggregate return over all K periods is

$$R_{Kt} = \frac{p_t - p_{t-K}}{p_{t-K}} = \frac{p_t}{p_{t-K}} - 1 = \left[\frac{p_t}{p_{t-1}} \times \frac{p_{t-1}}{p_{t-2}} \times \dots \times \frac{p_{t-K+1}}{p_{t-K}}\right] - 1$$
$$= \left[(1 + R_t)(1 + R_{t-1})\dots(1 + R_{t-K+1})\right] - 1$$
(1.4)

In the limit, as the frequency of the sampling of the data is increased so that they are measured over a smaller and smaller time interval, the simple and continuously compounded returns will be identical.

1.4.1 Real versus nominal series and deflating nominal series

If a newspaper headline suggests that 'house prices are growing at their fastest rate for more than a decade. A typical 3-bedroom house is now selling for £180,000, whereas in 1990 the figure was £120,000', it is important to appreciate that this figure is almost certainly in *nominal* terms. That is, the article is referring to the actual prices of houses that existed at those points in time. The general level of prices in most economies around the world has a general tendency to rise almost all of the time, so we need to ensure that we compare prices on a like-for-like basis. We could think of part of the rise in house prices being attributable to an increase in demand for housing, and part simply arising because the prices of all goods and services are rising together. It would be useful to be able to separate the two effects, and to be able to answer the question, 'how much have house prices risen when we remove the effects of general inflation?' or equivalently, 'how much are houses worth now if we measure their values in 1990-terms?' We can do this by *deflating* the nominal house price series to create a series of *real* house prices, which is then said to be in *inflation-adjusted terms* or *at constant prices*.

Deflating a series is very easy indeed to achieve: all that is required (apart from the series to deflate) is a *price deflator series*, which is a series measuring general price levels in the economy. Series like the consumer price index (CPI), producer price index (PPI) or the GDP Implicit Price Deflator, are often used. A more detailed discussion of which is the most relevant general price index to use is beyond the